

	1906-2005		1968-2002
Surface temperature (ºC)	0.74		0.6 – 1.2
	1961-2003	1993-2003	1986-2006
Sea level rise (mm/yr)	1.8	3.1	1.3 **

RegHCM FOR PENINSULAR MALAYSIA

• RegHCM FOR SABAH & SARAWAK

 CLIMATE PROJECTION DOWNSCALING FOR PENINSULAR MALAYSIA AND SABAH-SARAWAK USING UK HADLEY CENTRE PRECIS MODEL
 SEA LEVEL RISE

Model Name	Run ID	Period	Description
MRI-CGCM2.3.2	20C	1970-2000	20th century reconstruction (20C3M) with anthropogenic forcing (greenhouse gases, sulfate)
MRI-CGCM2.3.2	SRES A1B	2010-2100	One projection under SRES A1B scenario for the 21 st century
ECHAM5/MPIOM	20C_1	1970-2000	20th century reconstruction (20C3M) with anthropogenic forcing (greenhouse gases, sulfate) initialized in the year 2190 of the CTL. (EH5-T63L31_OM-GR1.5L40_20C_1
ECHAM5/MPIOM	SRES A1B_1	2010-2100	A 21 st century projection under SRES A1B scenario initialized in the year 2000 of the 20C_1. (EH5-T63L31_OM- GR1.5L40_A1B_1)
ECHAM5/MPIOM	SRES A1B_2	2010-2100	A 21 st century projection under SRES A1B scenario initialized in the year 2000 of the 20C_2. (EH5-T63L31_OM- GR1.5L40_A1B_2)
ECHAM5/MPIOM	SRES A1B_3	2010-2100	A 21 st century projection under SRES A1B scenario initialized in the year 2000 of the 20C_3. (EH5-163L31_OM- GR15140_A1B_3)

The main objective of this project may be stated as:

To carry out a study on the projection of the sea level changes along the Peninsular Malaysia (PM) and Sabah and Sarawak (SS) coastlines for the 21st century in order to determine the potential inundation of the coastal areas of PM and SS due to the expected climate change during the 21st century.

gauge data	around	PM and SS	coastlines					
l Name	Latitude	Longitude	Period of a	analysis End	Slope (cm/yr) by daily by daily			
P. Langakawi	06 25 51	99 45 51	12/1/1985	8/25/2009	0.19	0.2		
P. Pinang	05 25 18	100 20 48	12/1/1984	8/25/2009	0.23	0.1		
Lumut	04 14 24	100 36 48	1/1/1985	1/12/2009	0.21	0.2		
P. Klang	03 03 00	101 21 30	1/1/1984	12/2/2007	0.13	0.2		
Tg. Keling	02 12 54	102 09 12	12/1/1984	8/18/2009	0.13	0.1		
Kukup	01 19 31	103 26 34	1/1/1996	12/31/2008	0.30	1.2		
J. Bahru	01 27 42	103 47 30	1/1/1984	1/17/2009	0.23	0.1		
Tg. Sedili	01 55 54	104 06 54	11/1/1986	8/18/2009	0.12	0.1		
P. Tioman	02 48 26	104 08 24	12/3/1985	8/17/2009	0.18	0.2		
Tg. Gelang	03 58 30	103 25 48	1/1/1984	8/17/2009	0.26	0.3		
Chendering	05 15 54	103 11 12	11/1/1984	12/11/2008	0.22	0.2		
Geting	06 13 35	102 06 24	11/1/1986	8/18/2009	0.13	0.3		
Sejingkat	01 34 58	110 25 20	4/1/1996	12/31/2008	-0.58	-1.1		
Bintulu	03 15 44	113 03 50	4/30/1992	11/29/2009	0.02	0.4		
K. Kinabalu	05 59 00	116 04 00	7/1/1987	1/1/2005	0.44	0.1		
Kudat	06 52 46	116 50 37	1/1/1996	1/1/2009	0.30	1.2		
Sandakan	05 48 36	118 04 02	8/20/1993	1/16/2009	0.41	1.1		
Lahad Datu	05 01 08	118 20 46	1/1/1996	1/17/2009	0.36	0.5		
Tawau	04 14 00	117 53 00	7/1/1987	1/18/2009	0.35	0.3		
Labuan	05 16 22	115 15 00	1/1/1996	3/13/2008	0.07	1.1		

Month/ Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2025	1447	1445	1225	1017	832	817	737	750	782	1021	1021	1001
2026	1000	1021	862	773	594	582	521	545	343	189	-37	46
2027	-4	6	-163	-189	-134	-13	-16	43	303	286	430	442
2028	436	464	311	138	-4	-56	-34	2	-161	97	174	129
2029	132	162	13	-140	-136	-67	-2	-5	-173	163	-14	-49
2030	78	171	44	54	86	127	183	425	364	523	572	552
2031	547	569	514	698	599	941	956	1003	867	898	859	799
2032	766	776	624	513	490	553	757	931	992	1019	1053	1030
2033	1003	1040	833	643	548	672	670	836	718	874	885	929
2034	937	962	813	663	594	576	549	584	430	194	117	66
Average 2025-2034	634	662	508	417	347	413	432	511	447	526	506	495
2041	1456	1453	1335	1280	1216	1368	1375	1509	1509	1509	1425	1427
2042	1399	1410	1214	1060	1028	1036	1051	1250	1094	1085	900	870
2043	781	804	607	470	408	427	401	453	523	471	584	701
2044	740	787	627	437	755	943	1019	1097	983	1020	827	770
2045	717	715	561	361	184	149	177	210	120	268	224	197
2046	181	195	53	-142	-166	-46	-51	2	68	555	589	604
2047	610	636	470	398	298	330	370	384	189	47	-106	-61
2048	-70	-15	-194	-210	-63	-82	-25	80	-64	173	-23	-156
2049	19	50	-115	-152	-8	-26	-7	11	-88	51	55	18
2050	-12	17	-140	-197	-105	-29	242	342	344	535	459	425
Average	582	605	442	330	355	407	455	534	468	572	493	480

/												
-	District	Total Water Demand (MId)										
(District	2010	2020	2030	2040	2050						
l	Kuala Lumpur	1,247	1,607	1,748	1,898	2,021						
	Gombak	538	690	768	905	957						
	Petaling	848	1,048	1,121	1,201	1,259						
	Klang	1,343	1,804	1,995	2,199	2,298						
	Total	3,976	5,149	5,632	6,203	6,534						

/	Chang	e (Pro	ojecte	d Cor	nditio	n wit	h Initia	al Full	Dam	Stora	lge)-№	1CM	_
	Month/ Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(2025	284	141	16	-20	-57	-116	-135	-118	-141	-92	53	118
	2026	148	112	90	120	152	88	-22	-101	-131	-117	-1	44
	2027	9	-36	-27	-48	-100	-124	-144	-141	-149	-147	40	92
\square	2028	32	-81	-128	-98	-129	-145	-154	-158	-159	-65	48	10
	2029	-59	-37	-87	-56	-104	-135	-143	-127	-144	-120	23	81
	2030	64	125	154	221	463	485	414	302	173	61	169	191
	2031	144	35	20	70	101	88	-7	-130	-145	55	265	405
	2032	448	385	282	327	261	252	192	148	62	13	98	69
	2033	-16	-70	-54	-111	153	136	36	-88	-140	45	49	76
	2034	30	-39	-68	-31	-14	-76	-117	-121	-137	-76	57	92
	Average	108	53	20	37	73	45	-8	-53	-91	-44	80	118
	2041	260	92	-77	-158	73	2	-124	-75	-135	125	267	273
	2042	182	67	-73	2	-57	-125	-152	-140	-150	-168	-133	-124
	2043	-159	-169	-161	-26	-29	-105	-117	-150	-12	7	-50	-2
	2044	-101	-142	-154	-145	-153	-162	-179	-115	-144	-81	-69	-108
	2045	-109	-155	-155	19	-22	-95	-144	-161	-167	-46	-9	-101
	2046	-141	-159	-163	-110	-6	-99	-147	-166	-117	-45	0	-99
	2047	-23	-112	-131	-72	-136	-157	-165	-31	-113	-112	-82	-137
	2048	-167	-173	-177	-143	128	213	151	45	-89	-26	-50	-115
	2049	-158	-145	-163	104	221	179	64	-91	-161	-77	6	-16
	2050	13	-83	-121	-75	-95	-143	-152	-172	-177	-124	5	-89
	Average	-40	-98	-137	-60	-8	-49	-96	-106	-126	-55	-12	-52

1	Water So und	upply er C	/-De limat	mano ce Cł	d Sce nange	enario e (Pro	o for oject	Klar ed C	ng Val Condi	lley V ition)	Vate)- M(r-Sup CM	ply
1	Month/ Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	2025	-139	-144	-125	-36	-57	-116	-135	-118	-141	-92	53	65
	2026	30	-35	-22	30	32	-64	-110	-101	-131	-117	-1	44
	2027	-35	-44	-27	-48	-100	-124	-144	-141	-149	-147	40	52
	2028	-61	-113	-128	-98	-129	-145	-154	-158	-159	-65	48	-38
	2029	-69	-37	-87	-56	-104	-135	-143	-127	-144	-120	23	58
	2030	-18	61	29	68	241	22	-71	-112	-129	-112	108	22
	2031	-47	-109	-15	50	31	-13	-95	-130	-145	55	210	139
	2032	44	-64	-103	45	-66	-9	-60	-45	-85	-50	85	-29
	2033	-85	-70	-54	-111	153	-17	-100	-124	-140	45	4	27
	2034	-82	-128	-147	-152	-145	-162	-162	-158	-149	-158	-1	13
	Average	-46	-68	-68	-31	-14	-76	-117	-121	-137	-76	57	35
	2041	-163	-168	-169	-158	73	-71	-126	-75	-135	125	142	7
	2042	-91	-115	-140	2	-59	-125	-152	-140	-150	-168	-133	-124
	2043	-159	-169	-161	-26	-29	-105	-117	-150	-12	7	-57	-2
	2044	-101	-142	-154	-145	-153	-162	-179	-115	-144	-81	-69	-108
	2045	-109	-155	-155	19	-41	-95	-144	-161	-167	-46	-9	-101
	2046	-141	-159	-163	-110	-6	-99	-147	-166	-117	-45	0	-99
	2047	-23	-112	-131	-72	-136	-157	-165	-31	-113	-112	-82	-137
	2048	-167	-173	-177	-143	128	85	-62	-106	-134	-26	-50	-115
	2049	<mark>-158</mark>	-145	-163	104	117	-42	-115	-156	-161	-77	6	-22
	2050	13	-96	-121	-75	-95	-143	-152	-172	-177	-124	5	-94
	Average	-110	-143	-153	-61	-20	-91	-136	-127	-131	-55	-25	-80

	Identification of Anticipated Impacts
	 Generally, water resources are adequate but urban areas might experience disruption of water supply during extreme drought events;
	 Increase & decrease volume of rainfall : potential factor for droughts and floods;
Bekok Dam	 In turn, influence policy decision and enhance water resources management
	NCVI study : based on the global-high (worst case) projection for sea level rise (SLR) of 10mm/year (1 meter by the end of the century), an estimated 1820 ha of coastal land at Tanjung Piai and 148 ha at Pantai Chenang, Langkawi will be inundated;
Tanjung Piai Mangrove	
	Increase in sea surface temperature (SST) is one of the identified stressors for aquatic life such as coral reefs which thrive at optimum temperatures of 25°C to 29°C
Redang Island	

CLIMATE PREDICTION

A climate prediction or climate forecast is the result of an attempt to produce a most likely description or estimate of the actual evolution of the climate in the future, e.g. at seasonal, inter-annual or long-term time scales.

CLIMATE PROJECTION

A projection of the response of the climate system to emission or concentration scenarios of greenhouse gases and aerosols, or radiative forcing scenarios, often based upon simulations by climate models. Climate projections are distinguished from climate predictions in order to emphasise that climate projections depend upon the emission/concentration/ radiative forcing scenario used, which are based on assumptions, concerning, e.g., future socio-economic and technological developments, that may or may not be realised, and are therefore subject to substantial uncertainty.

http://www.ipcc.ch/ipccreports/tar/wg1/518.htm

